ROUND I: Parallel lines and polygons

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Lines 1 and m are parallel.

Find angle measure x .

2. Given regular octagon $A B C D E F G H$, find the measure of angle $A B D$.
3. Triangle $A B C$ has sides $A C=5, A B=12$, and $B C=8$. The bisector of the exterior angles at B intersects line $A C$ at point D. A line through C parallel to line $B D$ intersects segment $A B$ at point E. Find length $A E$.

ANSWERS

1. (1 pt) \qquad
2. (2 pts) \qquad
3. (3 pts) \qquad
Bromfield, Hudson, St.Peter-Marian

ROUND II: Algebra 1 - open

ALL ANSWERS MUST BE RN SIAPLEST EXACT FORM

1. The letters M, A, T, H represent digits, not necessarily distinct. What digit does A represent if $\sqrt{\text { MATH }}=2^{5}$, where MATH represents a 4 -digit number?
2. An apple orchard has 40 trees and the average yield is 300 apples per tree. For each additional tree planted, the arevage yield par tree is reduced by 15 apples, for all the trees. If y is the number of new trees planted, write a formula for the total number of apples produced, T.
3. In the magic square shown, the sums of the numbers in each row, column, and both diagonals are the same. Five of these numbers are represented by the letters shown. Find the numerical value of v.

v	24	w
18	x	y
25	z	21

ANSWERS

1. $(1 \mathrm{pt})$
2. (2 pts) $\mathrm{T}=$
3. (3 pts)

Auburn, Burncoat, Shrewsbury

ROUND III: Circles

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Find the radius of a circle in which a central angle of 20° intercepts an arc of length $2 \pi \mathrm{~cm}$.

2 Segment $A F$ is a tangent $A E=E F$ The measure of $\operatorname{arc} \mathrm{FD}=100^{\circ}$. Find the measure of angle FAE .

3. Segment $A B$ is tangent to circle O at point A. Point D is inside the circle and segment DB intersects the circle at C . If $\mathrm{BC}=\mathrm{DC}=3$, $\mathrm{OD}=2$, and $\mathrm{AB}=6$, find the radius of the circle.

ANSWERS
$1 .(1 \mathrm{pt}) \xrightarrow{\mathrm{cm}}$
2. (2 pts) \qquad
3. (3 pts) \qquad
Shepherd Hill, Tahanto, Tantasqua

ROUND IV: Sequences and series

NO CALCULATOR USE

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. An auditorium has 15 rows with 20 seats in the fust pow and 2 more seats ia each row thereafter. How many seats are there in the last row?
2. How far has a ball traveled if it is dropped from a height of 8 feet and it bounces 6 times, reaching $\frac{1}{2}$ of its height each time and is caught at the top of that last bounce?
3. Consider the sum $S=12+14+16+18+\ldots+N$.

What is the first value of N that mekes S a perfect square?

ANSWERS

1. (1 pt) \qquad
2. (2 pts) feet
3. (3 pts)

Mass. Academy, Shrewsbury, Southbridge

ROUND V: Matrices and systems of equationis

NO CALCULATOR USE

ALl An SWERS MUST BE IN SIMPLEST EXACT FORM

1. Find the solutions of the system $\left\{\begin{array}{l}y=x+2 \\ y=x^{2}\end{array}\right.$. Answer in ordered pair (x, y) form.
2. Find the sum $x+y+z$ if

$$
\left[\begin{array}{l}
x a+y \\
x \\
y a+z
\end{array}\right]=\left[\begin{array}{ccc}
2 & a & 3 \\
-1 & 3 & 0 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
a
\end{array}\right]
$$

3. There are four unequal positive integers a, b, c, and N such that $N=5 a+3 b+5 c$. It is also true that $N=4 a+5 b+4 c$ and N is between 131 and 150 . What is the value of $a+b+c$?

ANSWERS

1. (1 pt)
2. (2 pts)
3. (3 pts)

Doherty, Hudson, Worcester Academy

TEAM ROUND: Topics of previous rounds and open

ALL ANSWERS MUST BE IN SMMPLEST EXACT FORM and ON THE SEPARATE TEAM ROUND ANSWER SHEET

1. ABCD is a trapezoid with diagonals $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$ intersecting at X . $\overline{\mathrm{RS}}$ is parallel to $\overline{\mathrm{DC}}$. If $A B=\xi$ and $D C=15$, find length RS.

2. Brad is 24 years old. Brad is twice as old as Erin was when Brad was as old as Erin is now. How old is Erin?
3. The diameter of a circle has length 15 and is divided into five equal segments. Find the total length of the four chords drawn perpendicular to the diameter at the points of division.
4. Brianne produces a sequence of positive integers by following three rules. She starts with a positive integer. then applies the appropiate rule to the result, and continues in this fashion.
Rule 1: If the integer is less than 10 , multiply it by 9.
Rule 2: If it is even and greater than 9 , divide it by 2.
Rule 3: If it is odd and greater than 9, subtract 5 from it.
A sample sequence: $23,18,9,81,76, \ldots$
Find the 98 th term of the sequence that begins with 98 .
5. If $\frac{A}{x}+\frac{B}{x+1}+\frac{C}{x-1}=\frac{3 x^{2}+1}{x^{3}-x}$, determine the numerical value of B.
6. The number h is called the harmonic mean of a and b if $\frac{a-h}{h-b}=\frac{a}{b}$. Solve this equation for h.
7. How many sets of 3 consecutive odd integers have a sum between 26 and 52?
8. If $4^{x}-4^{x-1}=48$, find $(2 x)^{x}$.
9. If $m: n=3: 4$ and $r: s=1: 3$, find the value of $\frac{4 m r-n s}{2 n s-m r}$.

Auburn, Bancroft, Doherty, Hudson, St.John's, Worcester Academy

ROUND I	1.1 pt	31°	may omit degrees symb
II lines polygons	2.2 pts	$1 / 2.5^{\circ}$	$112 \frac{1}{2}$ ok

3. 3 pts

4

Round II 1. Int O or $A=0$ ala 1

$$
\begin{aligned}
& ? 2 \text { nos } T= \begin{array}{r}
(40+y)(300-15 y) \\
12000-300 y-15 y^{2} \\
0 R 15\left(800-20 y-y^{2}\right)
\end{array} \\
& \therefore \quad 3 n t s \quad 23
\end{aligned}
$$

ROUND III 1.1 pt 18 cm
circles
2. 2 pots 25°
3. 3 ts $\sqrt{22}$

ROUND IV

1. 1 nt

48
$\underset{\substack{\text { seq } \\ \text { series }}}{\operatorname{2n}} 2$ 2 ats $23 \frac{5}{8}$ or 23.625 ft
3. 3 nuts 60

ROMP 1.1 ot $(-1,1),(2,4) \begin{aligned} & \text { need } \\ & \text { both }\end{aligned}$
mat
mys
2. 2 ns 10
2. 3 uts 33

TRAM ROUND 2 Dts each

1. 7.5 or $7 \frac{1}{2}$ or $\frac{15}{2}$
2. 18 years
3. $24+12 \sqrt{6}$

OR $12(2+\sqrt{6})$
4. 27
5. 2
6. $\frac{2 a b}{a+b}$
7. 5
8. 216
9. 0

Round I
1.

ext. L of Δ
$x+62^{\circ}=93^{\circ}$

$$
x=31^{\circ}
$$

Ulm is irrelevant

3.

$$
m \angle C=135^{\circ} \quad\left(180^{\circ}-\frac{360^{\circ}}{8}\right)
$$

other two L's in iss $\triangle B C D$ are $\frac{45^{\circ}}{2}=22 \frac{1}{2}^{\circ}$ each

$$
m \angle A B D=135^{\circ}-22 \frac{1}{2}^{\circ}=112 \frac{1}{2}^{\circ}
$$

The bisected \angle at B and the 11 lines and transversals make $\angle B C E \cong \angle B E C$.

$$
\therefore B E=B C=8
$$

$$
\text { and } A E=12-8=4
$$

Round II

1. $\sqrt{\text { MATH }}=2^{5} \Rightarrow$ MATH $=2^{10}=1024$

$$
\therefore A=0
$$

2. $T=($ new \# trees $)$ (new ave yield)

$$
T=(40+y)(300-15 y)
$$

3. Since v appears in $1 s 1$ raj, 1 st column, and one diagonal, $24+w=18+25=x+21$. $\therefore w=19$ and $x=22$. Then 25,22 , and 19 are on a diagonal and the "magic sum" is 66. $v+43=66 \Rightarrow v=23$.

Round III

1. $2 \pi=\frac{20}{360}(2 \pi r) \Rightarrow r=18 \mathrm{~cm}$
2. $A E=E F$ makes $m \angle A=m \angle E F A=x$.

$$
\begin{aligned}
& x=\frac{1}{2}(m \widehat{F D}-m \widehat{E F})=\frac{1}{2}\left(100^{\circ}-2 x\right) \\
& x=50-x \Rightarrow x=m\left(F A E=25^{\circ}\right.
\end{aligned}
$$

ROUND III cont.
3.

Extend $\overline{O D}$ and $\overline{B D}$ as shown to F, G, and E

$$
B C \cdot B E=B A^{2}
$$

$$
3(6+D E)=6^{2}
$$

gets $D E=6$.
Next $D E \cdot D C=D F \cdot D G$
$6 \cdot 3=(r-2)(r+2)$
$18=r^{2}-4$ and $r=\sqrt{22}$
Round IV
1 Arith seq. $t_{15}=t_{1}+14 d$

$$
=20+14 \cdot 2=48
$$

OR count by 2; from 20
2. Six "downs" starting with 8 and six "ups" starting with 4.

$$
\begin{aligned}
& 8+4+2+1+\frac{1}{2}+\frac{1}{4} \\
& +4+2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=23 \frac{5}{8} \mathrm{ft}
\end{aligned}
$$

3 Let N be the nth term.

$$
\begin{aligned}
N & =12+2(n-1) \\
S & =\left(\frac{12+N}{2}\right) n=\left(\frac{12+12+2(n-1)}{2}\right) n \\
& =\cdots=(n+11)^{n} \text { is to be }
\end{aligned}
$$

a perfect square. Trying $n=4,9,16,25$ or maybe something more clever finds $n=25$ as the smallest positive n making a perfect square, 36.25. Then $N=12+2.24=60$.
ROUND V

1. Equating the y 's, $x^{2}=x+2$.

$$
\begin{aligned}
& x^{2}-x-2=0 \\
& (x-2)(x+1)=0 \\
& x=2 \text { or }-1
\end{aligned}
$$

Using $y=x^{2}$ we get the (x, y) pairs $(2,4)$ and $(-1,1)$

Dec 5, 2001 WOCOMAL Varsity BRIEF SOLUTIONS cont.

ROUND V
2. $\left[\begin{array}{ccc}2 & a & 3 \\ -1 & 3 & 0 \\ 1 & 1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ a\end{array}\right]=\underbrace{\left[\begin{array}{c}2+5 a \\ 5 \\ 3+2 a\end{array}\right]}_{\text {gets } x=5, y=2, z=3}=\left[\begin{array}{c}x a+y \\ x \\ y a+z\end{array}\right]$
and $x+y+z=10$
3. $N=5 a+3 b+5 c \leftarrow$ molt by 4
$N=4 a+5 b+4 c \leftarrow$ mull by 5
$\left.\begin{array}{l}4 N=20 a+12 b+20 c \\ 5 N=20 a+25 b+20 c\end{array}\right\}$ Then subtract $-N=-13 b$ or $N=136$. Also $131<N<150$
$\therefore 131<13 b<150$ and b is a pos int.
$\therefore b=11$ and $N=143$.
From original eq, $143=5 a+33+5 c$
$110=5 a+5 c$ and $a+c=22$.
Finally $a+b+c=33$
team round

1. $\triangle A \times B \sim \triangle C \times D$
side ratio $1: 3$
$\triangle A R X \sim \triangle A D C$

side ratio 1.4

$$
R X=\frac{1}{4} D C=\frac{15}{4}
$$

$$
\triangle X S C \sim \triangle A B C \text {, side ratio 3'4 }
$$

$$
R S=R X+X S=\frac{15}{2}
$$

2.

	now	then
Brad	24	x
Erin	x	12

$$
\begin{gathered}
24-x=x-12 \\
\vdots=18
\end{gathered}
$$

3.

$$
x^{2}+4.5^{2}=7.5^{2}
$$

gets $x=6$

$$
y^{2}+1.5^{2}=7.5^{2}
$$

gets $y=3 \sqrt{6}$

$$
4 x+4 y=24+12 \sqrt{6}
$$

5. Since $x(x+1)(x-1)=x^{3}-x$, mull by it to get

$$
\begin{aligned}
& A(x+1)(x-1)+B x(x-1)+C x(x+1)=3 x^{2}+1 \\
& \vdots \\
& x^{2}(A+B+C)+x(-B+C)+(-A)=3 x^{2}+1 \\
& \left\{\begin{array}{l}
A+B+C=3 \\
-B+C=0 \\
-A=A
\end{array}\right\} \Rightarrow A=-1, B=2, C=2
\end{aligned}
$$

6

$$
\begin{aligned}
& \frac{a-h}{h-b}=\frac{a}{b} \Rightarrow a b-b h=a h-a b \\
& 2 a b=a h+b h \text { and } h=\frac{2 a b}{a+b}
\end{aligned}
$$

7. Sum $=3$ times middle one so possible middle ones are $9,11,13,15,17$
Ans: 5
$8 \quad 4^{x}-4^{x-1}=48$

$$
\begin{aligned}
& 4^{x-1}(4-1)=48 \\
& 4^{x-1}=16 \Rightarrow x-1=2 \text { and } x=3 \\
& (2 x)^{x}=6^{3}=216
\end{aligned}
$$

9 Just use $m=3, n=4, r=1, s=3$.

$$
\frac{4 m r-n s}{2 n s-m r}=\frac{12-12}{24-3}=0
$$

